Archive for the 'Bad Logic' category

Genius Continuum Crackpottery

Mar 21 2013 Published by under Bad Algebra, Bad Logic, Bad Math, Cantor Crankery

There's a lot of mathematical crackpottery out there. Most of it is just pointless and dull. People making the same stupid mistakes over and over again, like the endless repetitions of the same-old supposed refutations of Cantor's diagonalization.

After you eliminate that, you get reams of insanity - stuff which
is simply so incoherent that it doesn't make any sense. This kind of thing is usually word salad - words strung together in ways that don't make sense.

After you eliminate that, sometimes, if you're really lucky, you'll come accross something truly special. Crackpottery as utter genius. Not genius in a good way, like they're an outsider genius who discovered something amazing, but genius in the worst possible way, where someone has created something so bizarre, so overwrought, so utterly ridiculous that it's a masterpiece of insane, delusional foolishness.

Today, we have an example of that: Existics!. This is a body of work by a high school dropout named Gavin Wince with truly immense delusions of grandeur. Pomposity on a truly epic scale!

I'll walk you through just a tiny sample of Mr. Wince's genius. You can go look at his site to get more, and develop a true appreciation for this. He doesn't limit himself to mere mathematics: math, physics, biology, cosmology - you name it, Mr. Wince has mastered it and written about it!

The best of his mathematical crackpottery is something called C3: the Canonized Cardinal Continuum. Mr. Wince has created an algebraic solution to the continuum hypothesis, and along the way, has revolutionized number theory, algebra, calculus, real analysis, and god only knows what else!

Since Mr. Wince believes that he has solved the continuum hypothesis. Let me remind you of what that is:

  1. If you use Cantor's set theory to explore numbers, you get to the uncomfortable result that there are different sizes of infinity.
  2. The smallest infinite cardinal number is called ℵ0,
    and it's the size of the set of natural numbers.
  3. There are cardinal numbers larger than ℵ0. The first
    one larger than ℵ0 is ℵ1.
  4. We know that the set of real numbers is the size of the powerset
    of the natural numbers - 20 - is larger than the set of the naturals.
  5. The question that the continuum hypothesis tries to answer is: is the size
    of the set of real numbers equal to ℵ1? That is, is there
    a cardinal number between ℵ0 and |20|?

The continuum hypothesis was "solved" in 1963. In 1940, Gödel showed that you couldn't disprove the continuum hypothesis using ZFC. In 1963,
another mathematician named Paul Cohen, showed that it couldn't be proven using ZFC. So - a hypothesis which is about set theory can be neither proven nor disproven using set theory. It's independent of the axioms of set theory. You can choose to take the continuum hypothesis as an axiom, or you can choose to take the negation of the continuum hypothesis as an axiom: either choice is consistent and valid!

It's not a happy solution. But it's solved in the sense that we've got a solid proof that you can't prove it's true, and another solid proof that you can't prove it's false. That means that given ZFC set theory as a basis, there is no proof either way that doesn't set it as an axiom.

But... Mr. Wince knows better.

The set of errors that Wince makes is really astonishing. This is really seriously epic crackpottery.

He makes it through one page without saying anything egregious. But then he makes up for it on page 2, by making multiple errors.

First, he pulls an Escultura:

x1 = 1/21 = 1/2 = 0.5

x2 = 1/21 + 1/22 = 1/2 + 1/4 = 0.75

x3 = 1/21 + 1/22 + 1/23 = 1/2 + 1/4 + 1/8 = 0.875

...

At the end or limit of the infinite sequence, the final term of the sequence is 1.0

...

In this example we can see that as the number of finite sums of the sequence approaches the limit infinity, the last term of the sequence equals one.

xn = 1.0

If we are going to assume that the last term of the sequence equals one, it can be deduced that, prior to the last term in the sequence, some finite sum in the series occurs where:

xn-1 = 0.999…

xn-1 = 1/21 + 1/22 + 1/23 + 1/24 + … + 1/2n-1 = 0.999…

Therefore, at the limit, the last term of the series of the last term of the sequence would be the term, which, when added to the sum 0.999… equals 1.0.

There is no such thing as the last term of an infinite sequence. Even if there were, the number 0.999.... is exactly the same as 1. It's a notational artifact, not a distinct number.

But this is the least of his errors. For example, the first paragraph on the next page:

The set of all countable numbers, or natural numbers, is a subset of the continuum. Since the set of all natural numbers is a subset of the continuum, it is reasonable to assume that the set of all natural numbers is less in degree of infinity than the set containing the continuum.

We didn't need to go through the difficult of Cantor's diagonalization! We could have just blindly asserted that it's obvious!

or actually... The fact that there are multiple degrees of infinity is anything but obvious. I don't know anyone who wasn't surprised the first time they saw Cantor's proof. It's a really strange idea that there's something bigger than infinity.

Moving on... the real heart of his stuff is built around some extremely strange notions about infinite and infinitessimal values.

Before we even look at what he says, there's an important error here
which is worth mentioning. What Mr. Wince is trying to do is talk about the
continuum hypothesis. The continuum hypothesis is a question about the cardinality of the set of real numbers and the set of natural numbers.
Neither infinites nor infinitessimals are part of either set.

Infinite values come into play in Cantor's work: the cardinality of the natural numbers and the cardinality of the reals are clearly infinite cardinal numbers. But ℵ0, the smallest infinite cardinal, is not a member of either set.

Infinitessimals are fascinating. You can reconstruct differential and integral calculus without using limits by building in terms of infinitessimals. There's some great stuff in surreal numbers playing with infinitessimals. But infinitessimals are not real numbers. You can't reason about them as if they were members of the set of real numbers, because they aren't.

Many of his mistakes are based on this idea.

For example, he's got a very strange idea that infinites and infinitessimals don't have fixed values, but that their values cover a range. The way that he gets to that idea is by asserting the existence
of infinity as a specific, numeric value, and then using it in algebraic manipulations, like taking the "infinityth root" of a real number.

For example, on his way to "proving" that infinitessimals have this range property that he calls "perambulation", he defines a value that he calls κ:

\[ sqrt[infty]{infty} = 1 + kappa\]

In terms of the theory of numbers, this is nonsense. There is no such thing as an infinityth root. You can define an Nth root, where N is a real number, just like you can define an Nth power - exponents and roots are mirror images of the same concept. But roots and exponents aren't defined for infinity, because infinity isn't a number. There is no infinityth root.

You could, if you really wanted to, come up with a definition of exponents that that allowed you to define an infinityth root. But it wouldn't be very interesting. If you followed the usual pattern for these things, it would be a limit: \(sqrt[infty]{x} lim_{nrightarrowinfty} sqrt[n]{x}\). That's clearly 1. Not 1 plus something: just exactly 1.

But Mr. Cringe doesn't let himself be limited by silly notions of consistency. No, he defines things his own way, and runs with it. As a result, he gets a notion that he calls perambulation. How?

Take the definition of κ:

\[ sqrt[infty]{infty} = 1 + kappa\]

Now, you can, obviously, raise both sides to the power of infinity:

\[infty = (1 + kappa)^{infty}\]

Now, you can substitute ℵ0 for \(infty\). (Why? Don't ask why. You just can.) Then you can factor it. His factoring makes no rational sense, so I won't even try to explain it. But he concludes that:

  • Factored and simplified one way, you end up with (κ+1) = 1 + x, where x is some infinitessimal number larger than κ. (Why? Why the heck not?)
  • Factored and simplified another way, you end up with (κ+1) = ℵ
  • If you take the mean of of all of the possible factorings and reductions, you get a third result, that (κ+1) = 2.

He goes on, and on, and on like this. From perambulation to perambulating reciprocals, to subambulation, to ambulation. Then un-ordinals, un-sets... this is really an absolute masterwork of utter insane crackpottery.

Do download it and take a look. It's a masterpiece.

No responses yet

Sloppy Dualism Denies Free Will?

Jan 17 2013 Published by under Bad Logic

When I was an undergrad in college, I was a philosophy minor. I spent countless hours debating ideas about things like free will. My final paper was a 60 page rebuttal to what I thought was a sloppy argument against free will. Now, it's been more years since I wrote that than I care to admit - and I still keep seeing the same kind of sloppy arguments, that I argue are ultimately circular, because they're hiding their conclusion in their premises.

There's an argument against free will that I find pretty compelling. I don't agree with it, but I do think that it's a solid argument:

Everything in our experience of the universe ultimately comes down to physics. Every phenomenon that we can observe is, ultimately, the result of particles interacting according to basic physical laws. Thermodynamics is the ultimate, fundamental ruler of the universe: everything that we observe is a result of a thermodynamic process. There are no exceptions to that.

Our brain is just another physical device. It's another complex system made of an astonishing number of tiny particles, interacting in amazingly complicated ways. But ultimately, it's particles interacting the way that particles interact. Our behavior is an emergent phenomenon, but ultimately, we don't have any ability to make choice, because there's no mechanism that allows us free choice. Our choice is determined by the physical interactions, and our consciousness of those results is just a side-effect of that.

If you want to argue that free will doesn't exist, that argument is rock solid.

But for some reason, people constantly come up with other arguments - in fact, much weaker arguments that come from what I call sloppy dualism. Dualism is the philosophical position that says that a conscious being has two different parts: a physical part, and a non-physical part. In classical terms, you've got a body which is physical, and a mind/soul which is non-physical.

In this kind of argument, you rely on that implicit assumption of dualism, essentially asserting that whatever physical process we can observe isn't really you, and that therefore by observing any physical process of decision-making, you infer that you didn't really make the decision.

For example...

And indeed, this is starting to happen. As the early results of scientific brain experiments are showing, our minds appear to be making decisions before we're actually aware of them — and at times by a significant degree. It's a disturbing observation that has led some neuroscientists to conclude that we're less in control of our choices than we think — at least as far as some basic movements and tasks are concerned.

This is something that I've seen a lot lately: when you do things like functional MRI, you can find that our brains settled on a decision before we consciously became aware of making the choice.

Why do I call it sloppy dualism? Because it's based on the idea that somehow the piece of our brain that makes the decision is different from the part of our brain that is our consciousness.

If our brain is our mind, then everything that's going on in our brain is part of our mind. Taking a piece of our brain, saying "Whoops, that piece of your brain isn't you, so when it made the decision, it was deciding for you instead of it being you deciding.

By starting with the assumption that the physical process of decision-making we can observe is something different from your conscious choice of the decision, this kind of argument is building the conclusion into the premises.

If you don't start with the assumption of sloppy dualism, then this whole argument says nothing. If we don't separate our brain from our mind, then this whole experiment says nothing about the question of free will. It says a lot of very interesting things about how our brain works: it shows that there are multiple levels to our minds, and that we can observe those different levels in how our brains function. That's a fascinating thing to know! But does it say anything about whether we can really make choices? No.

No responses yet

For every natural number N, there's a Cantor Crank C(n)

Nov 10 2012 Published by under Bad Logic, Bad Math, Cantor Crankery

More crankery? of course! What kind? What else? Cantor crankery!

It's amazing that so many people are so obsessed with Cantor. Cantor just gets under peoples' skin, because it feels wrong. How can there be more than one infinity? How can it possibly make sense?

As usual in math, it all comes down to the axioms. In most math, we're working from a form of set theory - and the result of the axioms of set theory are quite clear: the way that we define numbers, the way that we define sizes, this is the way it is.

Today's crackpot doesn't understand this. But interestingly, the focus of his problem with Cantor isn't the diagonalization. He thinks Cantor went wrong way before that: Cantor showed that the set of even natural numbers and the set of all natural numbers are the same size!

Unfortunately, his original piece is written in Portuguese, and I don't speak Portuguese, so I'm going from a translation, here.

The Brazilian philosopher Olavo de Carvalho has written a philosophical “refutation” of Cantor’s theorem in his book “O Jardim das Aflições” (“The Garden of Afflictions”). Since the book has only been published in Portuguese, I’m translating the main points here. The enunciation of his thesis is:

Georg Cantor believed to have been able to refute Euclid’s fifth common notion (that the whole is greater than its parts). To achieve this, he uses the argument that the set of even numbers can be arranged in biunivocal correspondence with the set of integers, so that both sets would have the same number of elements and, thus, the part would be equal to the whole.

And his main arguments are:

It is true that if we represent the integers each by a different sign (or figure), we will have a (infinite) set of signs; and if, in that set, we wish to highlight with special signs, the numbers that represent evens, then we will have a “second” set that will be part of the first; and, being infinite, both sets will have the same number of elements, confirming Cantor’s argument. But he is confusing numbers with their mere signs, making an unjustifiable abstraction of mathematical properties that define and differentiate the numbers from each other.

The series of even numbers is composed of evens only because it is counted in twos, i.e., skipping one unit every two numbers; if that series were not counted this way, the numbers would not be considered even. It is hopeless here to appeal to the artifice of saying that Cantor is just referring to the “set” and not to the “ordered series”; for the set of even numbers would not be comprised of evens if its elements could not be ordered in twos in an increasing series that progresses by increments of 2, never of 1; and no number would be considered even if it could be freely swapped in the series of integeres.

He makes two arguments, but they both ultimately come down to: "Cantor contradicts Euclid, and his argument just can't possibly make sense, so it must be wrong".

The problem here is: Euclid, in "The Elements", wrote severaldifferent collections of axioms as a part of his axioms. One of them was the following five rules:

  1. Things which are equal to the same thing are also equal to one another.
  2. If equals be added to equals, the wholes are equal.
  3. If equals be subtracted from equals, the remainders are equal.
  4. Things which coincide with one another are equal to one another.
  5. The whole is greater that the part.

The problem that our subject has is that Euclid's axiom isn't an axiom of mathematics. Euclid proposed it, but it doesn't work in number theory as we formulate it. When we do math, the axioms that we start with do not include this axiom of Euclid.

In fact, Euclid's axioms aren't what modern math considers axioms at all. These aren't really primitive ground statements. Most of them are statements that are provable from the actual axioms of math. For example, the second and third axioms are provable using the axioms of Peano arithmetic. The fourth one doesn't appear to be a statement about numbers at all; it's a statement about geometry. And in modern terms, the fifth one is either a statement about geometry, or a statement about measure theory.

The first argument is based on some strange notion of signs distinct from numbers. I can't help but wonder if this is an error in translation, because the argument is so ridiculously shallow. Basically, it concedes that Cantor is right if we're considering the representations of numbers, but then goes on to draw a distinction between representations ("signs") and the numbers themselves, and argues that for the numbers, the argument doesn't work. That's the beginning of an interesting argument: numbers and the representations of numbers are different things. It's definitely possible to make profound mistakes by confusing the two. You can prove things about representations of numbers that aren't true about the numbers themselves. Only he doesn't actually bother to make an argument beyond simply asserting that Cantor's proof only works for the representations.

That's particularly silly because Cantor's proof that the even naturals and the naturals have the same cardinality doesn't talk about representation at all. It shows that there's a 1 to 1 mapping between the even naturals and the naturals. Period. No "signs", no representations.

The second argument is, if anything, even worse. It's almost the rhetorical equivalent of sticking his fingers in his ears and shouting "la la la la la". Basically - he says that when you're producing the set of even naturals, you're skipping things. And if you're skipping things, those things can't possible be in the set that doesn't include the skipped things. And if there are things that got skipped and left out, well that means that it's ridiculous to say that the set that included the left out stuff is the same size as the set that omitted the left out stuff, because, well, stuff got left out!!!.

Here's the point. Math isn't about intuition. The properties of infinitely large sets don't make intuitive sense. That doesn't mean that they're wrong. Things in math are about formal reasoning: starting with a valid inference system and a set of axioms, and then using the inference to reason. If we look at set theory, we use the axioms of ZFC. And using the axioms of ZFC, we define the size (or, technically, the cardinality) of sets. Using that definition, two sets have the same cardinality if and only if there is a one-to-one mapping between the elements of the two sets. If there is, then they're the same size. Period. End of discussion. That's what the math says.

Cantor showed, quite simply, that there is such a mapping:

\[{ (i rightarrow itimes 2) | i in N }\]

There it is. It exists. It's simple. It works, by the axioms of Peano arithmetic and the axiom of comprehension from ZFC. It doesn't matter whether it fits your notion of "the whole is greater than the part". The entire proof is that set comprehension. It exists. Therefore the two sets have the same size.

No responses yet

Representational Crankery: the New Reals and the Dark Number

Jan 06 2011 Published by under Bad Logic, Bad Math, Cantor Crankery, Numbers

There's one kind of crank that I haven't really paid much attention to on this blog, and that's the real number cranks. I've touched on real number crankery in my little encounter with John Gabriel, and back in the old 0.999...=1 post, but I've never really given them the attention that they deserve.

There are a huge number of people who hate the logical implications of our definitions real numbers, and who insist that those unpleasant complications mean that our concept of real numbers is based on a faulty definition, or even that the whole concept of real numbers is ill-defined.

This is an underlying theme of a lot of Cantor crankery, but it goes well beyond that. And the basic problem underlies a lot of bad mathematical arguments. The root of this particular problem comes from a confusion between the representation of a number, and that number itself. "\(frac{1}{2}\)" isn't a number: it's a notation that we understand refers to the number that you get by dividing one by two.

There's a similar form of looniness that you get from people who dislike the set-theoretic construction of numbers. In classic set theory, you can construct the set of integers by starting with the empty set, which is used as the representation of 0. Then the set containing the empty set is the value 1 - so 1 is represented as { 0 }. Then 2 is represented as { 1, 0 }; 3 as { 2, 1, 0}; and so on. (There are several variations of this, but this is the basic idea.) You'll see arguments from people who dislike this saying things like "This isn't a construction of the natural numbers, because you can take the intersection of 8 and 3, and set intersection is meaningless on numbers." The problem with that is the same as the problem with the notational crankery: the set theoretic construction doesn't say "the empty set is the value 0", it says "in a set theoretic construction, the empty set can be used as a representation of the number 0.

The particular version of this crankery that I'm going to focus on today is somewhat related to the inverse-19 loonies. If you recall their monument, the plaque talks about how their work was praised by a math professor by the name of Edgar Escultura. Well, it turns out that Escultura himself is a bit of a crank.

The specify manifestation of his crankery is this representational issue. But the root of it is really related to the discomfort that many people feel at some of the conclusions of modern math.

A lot of what we learned about math has turned out to be non-intuitive. There's Cantor, and Gödel, of course: there are lots of different sizes of infinities; and there are mathematical statements that are neither true nor false. And there are all sorts of related things - for example, the whole ideaof undescribable numbers. Undescribable numbers drive people nuts. An undescribable number is a number which has the property that there's absolutely no way that you can write it down, ever. Not that you can't write it in, say, base-10 decimals, but that you can't ever write down anything, in any form that uniquely describes it. And, it turns out, that the vast majority of numbers are undescribable.

This leads to the representational issue. Many people insist that if you can't represent a number, that number doesn't really exist. It's nothing but an artifact of an flawed definition. Therefore, by this argument, those numbers don't exist; the only reason that we think that they do is because the real numbers are ill-defined.

This kind of crackpottery isn't limited to stupid people. Professor Escultura isn't a moron - but he is a crackpot. What he's done is take the representational argument, and run with it. According to him, the only real numbers are numbers that are representable. What he proposes is very nearly a theory of computable numbers - but he tangles it up in the representational issue. And in a fascinatingly ironic turn-around, he takes the artifacts of representational limitations, and insists that they represent real mathematical phenomena - resulting in an ill-defined number theory as a way of correcting what he alleges is an ill-defined number theory.

His system is called the New Real Numbers.

In the New Real Numbers, which he notates as \(R^*\), the decimal notation is fundamental. The set of new real numbers consists exactly of the set of numbers with finite representations in decimal form. This leads to some astonishingly bizarre things. From his paper:

3) Then the inverse operation to multiplication called division; the result of dividing a decimal by another if it exists is called quotient provided the divisor is not zero. Only when the integral part of the devisor is not prime other than 2 or 5 is the quotient well defined. For example, 2/7 is ill defined because the quotient is not a terminating decimal (we interpret a fraction as division).

So 2/7ths is not a new real number: it's ill-defined. 1/3 isn't a real number: it's ill-defined.

4) Since a decimal is determined or well-defined by its digits, nonterminating decimals are ambiguous or ill-defined. Consequently, the notion irrational is ill-defined since we cannot cheeckd all its digits and verify if the digits of a nonterminaing decimal are periodic or nonperiodic.

After that last one, this isn't too surprising. But it's still absolutely amazing. The square root of two? Ill-defined: it doesn't really exist. e? Ill-defined, it doesn't exist. \(pi\)? Ill-defined, it doesn't really exist. All of those triangles, circles, everything that depends on e? They're all bullshit according to Escultura. Because if he can't write them down in a piece of paper in decimal notation in a finite amount of time, they don't exist.

Of course, this is entirely too ridiculous, so he backtracks a bit, and defines a non-terminating decimal number. His definition is quite peculiar. I can't say that I really follow it. I think this may be a language issue - Escultura isn't a native english speaker. I'm not sure which parts of this are crackpottery, which are linguistic struggles, and which are notational difficulties in reading math rendered as plain text.

5) Consider the sequence of decimals,

(d)^na_1a_2...a_k, n = 1, 2, ..., (1)

where d is any of the decimals, 0.1, 0.2, 0.3, ..., 0.9, a_1, ..., a_k, basic integers (not all 0 simultaneously). We call the nonstandard sequence (1) d-sequence and its nth term nth d-term. For fixed combination of d and the a_j's, j = 1, ..., k, in (1) the nth term is a terminating decimal and as n increases indefinitely it traces the tail digits of some nonterminating decimal and becomes smaller and smaller until we cannot see it anymore and indistinguishable from the tail digits of the other decimals (note that the nth d-term recedes to the right with increasing n by one decimal digit at a time). The sequence (1) is called nonstandard d-sequence since the nth term is not standard g-term; while it has standard limit (in the standard norm) which is 0 it is not a g-limit since it is not a decimal but it exists because it is well-defined by its nonstandard d-sequence. We call its nonstandard g-limit dark number and denote by d. Then we call its norm d-norm (standard distance from 0) which is d > 0. Moreover, while the nth term becomes smaller and smaller with indefinitely increasing n it is greater than 0 no matter how large n is so that if x is a decimal, 0 < d < x.

I think that what he's trying to say there is that a non-terminating decimal is a sequence of finite representations that approach a limit. So there's still no real infinite representations - instead, you've got an infinite sequence of finite representations, where each finite representation in the sequence can be generated from the previous one. This bit is why I said that this is nearly a theory of the computable numbers. Obviously, undescribable numbers can't exist in this theory, because you can't generate this sequence.

Where this really goes totally off the rails is that throughout this, he's working on the assumption that there's a one-to-one relationship between representations and numbers. That's what that "dark number" stuff is about. You see, in Escultura's system, 0.999999... is not equal to one. It's not a representational artifact. In Escultura's system, there are no representational artifacts: the representations are the numbers. The "dark number", which he notates as \(d^*\), is (1-0.99999999...) and \(d^* > 0\). In fact, \(d^*\) is the smallest number greater than 0. And you can generate a complete ordered enumeration of all of the new real numbers, \({0,
d^*, 2d^*, 3d^*, ..., n-2d^*, n-d^*, n, n+d^*, ...}\)
.

Reading Escultura, every once in a while, you might think he's joking. For example, he claims to have disproven Fermat's last theorem. Fermat's theorem says that for n>2, there are no integer solutions for the equation \(x^n + y^n = z^n\). Escultura says he's disproven this:

The exact solutions of Fermat's equation, which are the counterexamples to FLT, are given by the triples (x,y,z) = ((0.99...)10^T,d*,10^T), T = 1, 2, ..., that clearly satisfies Fermat's equation,

x^n + y^n = z^n, (4)

for n = NT > 2. Moreover, for k = 1, 2, ..., the triple (kx,ky,kz) also satisfies Fermat's equation. They are the countably infinite counterexamples to FLT that prove the conjecture false. One counterexample is, of course, sufficient to disprove a conjecture.

Even if you accept the reality of the notational artifact \(d^*\), this makes no sense: the point of Fermat's last theorem is that there are no integer solutions; \(d^*\) is not an integer; \((1-d^*)10\) is not an integer. Surely he's not that stupid. Surely he can't possibly believe that he's disproven Fermat using non-integer solutions? I mean, how is this different from just claiming that you can use (2, 3, 351/3) as a counterexample for n=3?

But... he's serious. He's serious enough that he's published published a real paper making the claim (albeit in crackpot journals, which are the only places that would accept this rubbish).

Anyway, jumping back for a moment... You can create a theory of numbers around this \(d^*\) rubbish. The problem is, it's not a particularly useful theory. Why? Because it breaks some of the fundamental properties that we expect numbers to have. The real numbers define a structure called a field, and a huge amount of what we really do with numbers is built on the fundamental properties of the field structure. One of the necessary properties of a field is that it has unique identity elements for addition and multiplication. If you don't have unique identities, then everything collapses.

So... Take \(frac{1}{9}\). That's the multiplicative inverse of 9. So, by definition, \(frac{1}{9}*9 = 1\) - the multiplicative identity.

In Escultura's theory, \(frac{1}{9}\) is a shorthand for the number that has a representation of 0.1111.... So, \(frac{1}{9}*9 = 0.1111....*9 = 0.9999... = (1-d^*)\). So \((1-d^*)\) is also a multiplicative identity. By a similar process, you can show that \(d^*\) itself must be the additive identity. So either \(d^* == 0\), or else you've lost the field structure, and with it, pretty much all of real number theory.

125 responses so far

Grandiose Crackpottery Proves Pi=4

Nov 16 2010 Published by under Bad Geometry, Bad Logic, Bad Math, Bad Physics

Someone recently sent me a link to a really terrific crank. This guy really takes the cake. Seriously, no joke, this guy is the most grandiose crank that I've ever seen, and I doubt that it's possible to top him. He claims, among other things, to have:

  1. Demonstrated that every mathematician since (and including) Euclid was wrong;
  2. Corrected the problems with relativity;
  3. Turned relativity into a unification theory by proving that magnetism is part of the relativistic gravitational field;
  4. Shown that all of gravitational/orbital dynamics is completely, utterly wrong; and, last but not least:
  5. proved that the one true correct value of \(pi\) is exactly 4.

I'm going to focus on the last one - because it's the simplest illustration of both his own comical insanity, of of the fundamental error underlying all of his rubbish.

Continue Reading »

86 responses so far

The Danger When You Don't Know What You Don't Know

May 03 2010 Published by under Bad Logic

A little bit of knowledge is a dangerous thing.

There's no shortage of stupidity in the world. And, alas, it comes in many, many different kinds. Among the ones that bug me, pretty much the worst is the stupidity that comes from believing that you know something that you don't.

This is particularly dangerous for people like me, who write blogs like this one where we try to explain math and science to non-mathemicians/non-scientists. Part of what we do, when we're writing our blogs, is try to take complicated ideas, and explain them in ways that make them at least somewhat comprehensible to non-experts.

There are, arising from this, two dangers that face a math or science blogger.

  1. There is the danger of screwing up ourselves. I've demonstrated this plenty of times. I'm not an expert in all of the things that I've tried to write about, and I've made some pretty glaring errors. I do my best to acknowledge and correct those errors, but it's all too easy to deceive myself into thinking that I understand something better than I actually do. I'm embarrassed every time that I do that.
  2. There is the danger of doing a good enough job that our readers believe that they really understand something on the basis of our incomplete explanation. When you're writing for a popular audience, you don't generally get into every detail of the subject. You do your best to just find a way of explaining it in a way that gives people some intuitive handle on the idea. It's not perfect, but that's life. I've read a couple of books on relativity, and I don't pretend to really fully understand it. I can't quite wrap my head around all of the math. That's after reading several entire books aimed at a popular audience. Even at that length, you can't explain all of the details if you're writing for non-experts. And if you can't do it in a three-hundred page book, then you certainly can't do it in a single blog post! But sometimes, a reader will see a simplified popular explanation, and believe that because they understand that, that they've gotten the whole thing. In my experience, relativity is one of the most common examples of this phenomenon.

Todays post is an example of how terribly wrong you can go by taking an intuitive explanation of something, believing that you understand the whole thing from that intuitive explanation, and running with it, headfirst, right into a brick wall.

Continue Reading »

54 responses so far

The Hallmarks of Crackpottery, Part 1: Two Comments

Oct 28 2009 Published by under Bad Logic, Cantor Crankery

Another chaos theory post is in progress. But while I was working on it, a couple of
comments arrived on some old posts. In general, I'd reply on those posts if I thought
it was worth it. But the two comments are interesting not because they actually lend
anything to the discussion to which they are attached, but because they are perfect
demonstrations of two of the most common forms of crackpottery - what I call the
"Education? I don't need no stinkin' education" school, and the "I'm so smart that I don't
even need to read your arguments" school.

Continue Reading »

183 responses so far

Crossword Guy just doesn't get math

Jun 24 2009 Published by under Bad Logic

One of my pet peeves about people and math is that most
people don't really have a clue of what math is. I've been writing
this blog for something over three years, and by the standards of
a lot of people, I've almost never written about math.

Yesterday, my son's kindergarten class had a picnic. On my way home,
I was listening to the local NPR station, which was interviewing some
crossword puzzle writer whose name I cannot remember; I will therefore refer
to him as "crossword-boy". (It was not Will Shortz; Shortz is much smarter than the
guy they were interviewing.) At one point, they asked him something about
Sudoku.

His response was a bit disjointed - he couldn't decide whether to talk about
the history of Sudoku or about his opinion of it. His opinion is that it's
incredibly dull and pointless, and that designing good Sudoku doesn't require as
much creativity as designing good crosswords. (Just that much is annoying: I'm
a Sudoku addict, and I've definitely noticed dramatic differences in Sudokus
from different places. Will Shortz's Sudoku books have great ones; most computerized
Sudoku games generate rather boring ones; the ones in most newspapers are
obviously computer generated.)

In the course of babbling about how uninteresting, non-creative, and
unsatisfying Sudoko puzzles are, he let loose with the real stupidity: "You know,
Sudoku doesn't even have to use numbers, it can use any 9 symbols. It's not a
mathematical puzzle at all.

Because it doesn't rely on arithmetic, according to crossword-boy,
it's not mathematical at all. He went on to say that it's
just a logic puzzle, not a math puzzle at all.

Sorry pal, but logic is math.

Sudoku is an incredibly mathematical puzzle. It's not an
arithmetic puzzle, but it's a highly mathematical one.
In computer science terms, it's a moderately
complex constraint-solving puzzle.

Math is more than arithmetic. It's more than numbers. Math
is really the formal study of logic and structure. Numbers and arithmetic
are one kind of structured system described using logic which can be
studied and understood using math. But pretty much everything
with a precise, formal structure to it has at least an element of
mathematics. The structure of crossword-boy's crossword puzzles
is fundamentally mathematical.

No responses yet

Yet Another Idiotic "Proof of God"

Aug 21 2007 Published by under Bad Logic

A bunch of readers, and one commenter in another thread, have all hit me with a pathetic
monstrosity of a purported proof of God. Several have even been misled by the URL where the
dreadful thing is posted, thinking that ScienceBlogs have picked up a creationist. Rest assured, this bozo and his blog have nothing to do with our beloved ScienceBlogs (note the "S"); it's just some jerk who wants to try to capitalize on our reputation.

If you want to find the original page, you can go to "scienceblog.com" yourself and find it. I'm not going to link to this slime - his blog name is an attempt to use SBs reputation to pump up his credibility, so I'm not going to send hits his way.

Continue Reading »

40 responses so far